PHYSICAL REVIEW E VOLUME 61, NUMBER 4 APRIL 2000

BRIEF REPORTS

Brief Reports are accounts of completed research which do not warrant regular articles or the priority handling given to Rapid
Communications; however, the same standards of scientific quality apply. (Addenda are included in Brief Reports.) A Brief Report may be
no longer than four printed pages and must be accompanied by an abstract. The same publication schedule as for regular articles is
followed, and page proofs are sent to authors.

Nonlinear noninertial response of a Brownian particle in a tilted periodic potential to a strong ac
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The solution of the Langevin equation describing the dynamics of a Brownian particle in a tilted periodic
potential in the overdamped limit is obtained in terms of a matrix continued fraction, allowing us to evaluate
statistical averages governing the nonlinear response to a strong ac force. Pronounced nonlinear effects are
observed for large values of the ac force. For a weak ac force and low noise strength, the results obtained agree
closely with previously available linear response and noiseless solutions, respectively.

PACS numbs(s): 05.10.Gg

The problem of the Brownian motion of a particle in a underlying nonlinear equation of motion can be solved nu-
tilted periodic potential arises in a number of physical appli-merically (see, e.g.[13,14 and references cited thergin
cations, for example, current-voltage characteristics of the Here the ac nonlinear response of a Brownian particle in a
Josephson junctiofil], mobility of superionic conductors tilted cosine potential in the presence of noise is evaluated
[2], a laser with injected sign&B], phase-locking techniques exactly applying the matrix continued fraction technique
in radio engineerind4], dielectric relaxation of molecular commonly used in nonlinear response problgms]. Our
crystals[5], etc. (This model currently merits attention in approach is a further development of those of R&8] for
view of the intense interest in the effect of noise in the op-the calculation of the harmonic mixing signal in a cosine
eration of nonlinear systems, e.g., stochastic resongﬁjce potential and of Reﬂ;lZ] for the evaluation of the mean beat
and of the ever increasing areas of application of the modefrequency of a dithered-ring-laser gyroscope. However, the
e.g., to the ring-laser gyroscop@].) A comprehensive dis- approach used here differs from those of REf2] and[15]
cussion of the model is given {8,9]. A concise method of (principally because théime-dependenportion of the ac
numerical treatment of the modéh terms of infinite con- nonlinear response may now be evaluatad has the merit
tinued fractiony with a particular application to a ring-laser of being considerably simpler that those previously available
gyroscope has been suggested by Cressal.[10]. Further ~ (for example, the expressions obtained in Rég] for the
development of this approach has been given in Refgrequency-dependent dc portion of the response are so com-
[8—11]. However, all the solutions obtained [8—11] are  plicated that they are of limited use in practicéhe station-
valid only for a weak ac external signal and so pertain to thedry ac nonlinear response was not extensively addressed be-
linear responseNevertheless, a variety of problems existsfore as it was not of experimental interest until recently, e.g.,
(e.g., the nonlinear impedance of a Josephson jungign to the nonlinear a¢microwave impedance of intrinsic and
the quantum noise effect on the mean beat frequency of &bricated Josephson junctions in the high temperature super-
dithered-ring-laser gyroscop&2], etc), where thenonlinear ~ conductorg14]. Thus, it is timely to accomplish a detailed
responseo a strong ac force is required. The calculation ofstudy of the problem under consideration.
the ac nonlinear response is a difficult task as there is no The Langevin equation of motion of a Brownian particle
longer any connection between the step-on and the step-offn a tilted cosine potential written in a dimensionless form is
responses and the ac response because the response nowdiéen by|[8]
pends on the precise nature of the stimulus—asunigue
response function valid for all stimuli unlike the linear re- 2 d
sponse exists. Attempts to calculate the nonlinear ac re—azy(t)wL y&y(tw—Fo siny(t)=F 4.+ F,coswt+f(t).
sponse of a Brownian particle in a tilted periodic potential &
have been made by many authors usually by means of the
perturbation theory5] so that the results are valid for low ac
force amplitudes only, or in the noiseless limit, where thewheref(t) is a white noise driving force such that
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fF(OF(t)=2y8(t—t"), Since we are solely concerned with the stationary ac re-
sponse, which is independent of the initial condition, one
&(t) is the Diracé function, and the overbar means the sta-needs to calculate the solution of E®) corresponding to
tistical average over an ensemble of particles that have athe stationary state. To accomplish this, one may seek all the
started at time with the same(sharp initial position y(t) (r" in the form
=y and velocityy(t)=y. In the present case, we shall con-

sider the overdamped limit only, which allows one to omit e - n ket
the inertial termy in Eq. (1) [8]. This restricts the range of (r >(t)—k:2_m Fi(w)e™. )
frequencies @<+F,) in which the model is applicable.
Equation(1) now become$8] On substituting Eq(4) into Eq. (3), we obtain recurrence

q equations for the Fourier amplitudég(w), viz.,

— —_— —_— i = _1 - .

mgry(t) X Ecoswtsiny=Fo . @) i) iz, () F(0) HEF(0)+ L ()]

wherex=F4/Fo and é=F,/F, are the tilt and nonlinear ~Fp Yw)=0, 5)

parameters, and= vy/F, is a relaxation time. Here we shall , )
use the Stratonovich definition of a stochastic differential’Vhere Znk(@)=2(x+wrk/n—in/y). The solution of the
equation[16] as that definition is the mathematical idealiza- WO variable (k, n) recurrence Eq(5) can be obtained in
tion of the noninertial relaxation process under consideratiof€'Ms of matrix continued fractions as follows. Let us intro-
[8,9]. On making the transformatiog—r"=e"'" in Eq. duce infinite column vector€,,(w) given by

(2), one obtains a stochastic differential equation with a mul-

tiplicative noise term, the averaging of which yields the En :(w)
-2

differential-recurrence relations for the momen(ss_”> N 0
=(e ™) (as described in detail in Rdf9]), viz., F*nl(“’) 0
Ch(w)| Folw) with Cp(w)=Cp=]| 1

d — — n — n
Tm(r“)+[in(x+§c05wt)+n2/y]<r”)=E[(r”*) Fi(w) 8

Filo)

—(r"hH1. 3
Here the angular brackets mean averaging over the sha{\ée)(t' forn=0 the scalafive-termrecurrence Eq(S) can be

values ofy at timet [9]. By assuming that the magnitude of ansformed into thenatrix three-ternrecurrence equation

the ac force parametef in Eq. (3) may take an arbitrary Qn(@)Cpr(@)+Cpy1(@)=Cp_1(w), N=1,2,3,..., (6)
value, one is faced with an intrinsically nonlinear problem,
which can be solved as follows. whereQ,(w) is a tridiagonal infinite matrix given by
Zy - 2(w) 3 0 0 0
£ Zn,—1(w) £ 0 0
Qn(w)=i 0 € Zn,O(w) £ 0
0 0 & Zni(w) 3
0

0 0 3 Zn,Z(w)

The recurrence Eq6) can be solved foiC, in terms of  tor C,(w) for n=—1 can also be obtained from E(}) by

matrix continued fractions, viz., taking into account thaFgl(w):Fé*(w) and Fy (o) =
I - Fl_*k(w) for k#0 (the asterisk denotes the complex conju-
Ci(w)= | Co, (7)  gate.
Qi(w)+ Having determined the column vector§,(w) and
Q)+ C_,(w), one may ev_aluate from Eg) and(7) the nonlin-
2 Qs(w)+-+ ear responséV) = r(y) given by

where the fraction lines designate the matrix inversionsland
is the identity matrix of infinite dimension. The column vec- (V)y=x+ & coswt—(siny)(t), (8
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FIG. 1. (V)g vs biasx parameter for varioug (y=25 andwr FIG. 2. R, vs x for various ¢ (y=50 andw7=0.1), showing
=0.4), showing the force-induce(Bhapirg steps; stars, Eq12). pronounced departure from linear respoitserve 1 as ¢ is in-
o o creased; stars, E@13).
where(siny)(t)=i[(r)—(r 1)]/2. The definition of Eq(8) is
very useful for particular applications as it determines, e.g.piro step$ on the curves adhere to the lik¥)5=x. For &
the current-voltage characteristics and nonlinear impedance 0, our theory yields the frequency-independent dc response
of a Josephson junctioft], the mean beat frequency of a (v),, which is in agreement with that of Ambegaokar and
dithered-ring-laser gyroscog€], etc. Thus, one can calcu- Halperin[17], who computed the dc current-voltage charac-
late both thetime-independentbut frequency-dependerdc  teristic of a Josephson junction by calculating the time-
response independent solution of the noninertial Fokker-Planck equa-
" 1 tion associated with the Langevin equati@. Their results
(VYo =x+ImFg(w)] 9 may be written a$9]

and thetime-dependent stationagc response (V)o=X+1IM[1 14 ix () Tixr (V)] (12

® iKeo The in-phaseR,=RgZ;(w)] and the out-of-phaseX,=
<V_<V>0>:|Zfl £ REZ(w)e"], (10 —Im[Z;(w)] parts of the first harmonic dynamic response
versusx for various¢ are presented in Figs. 2 and 3, showing
where strong phase-locking effects in the ac response, similar to the
steps seen i(V)g . For large values of the dc bias the influ-
Z( @)= 81— 1 & Fl(w)+F ()], ence of the ac force diminishes aij, and X, approach
unity and zero, respectively. Figures 2 and 3 show clearly
6 x is Kronecker's delta. The limit of a weak ac force that the response saturates at laggé&or (<1, the present
(é<1) allows us to calculate from Eg$9) and (10) the theory is in accordance with the results of the calculation of
linear response to an ac foreg,e'“! as well. On noting that the linear response described in Ref8} and[11] for the
(V)y=x—(siny)y+(V)1, where the subscripts “0” and “1” particular application to the Josephson junction, where both
denote the average in the absence of the ac force and tiexact and approximate equations for the linear impedance
average which is linear iff ,€'“!, respectively, we have Z,(w) of the junction have been derived. In our notation the
_ approximate equation fof,(w) reads
(V)1=Z1(w)ée'". (11

0.2

The matrix continued fraction solution just obtained is a
general result for the nonlinear response to an ac extern
force of arbitrary amplitude. It may be shown by means of
the direct numerical calculation that the matrix continued
fraction in Eq.(7) converges in all ranges of the model pa-
rameters of interestalgorithms for calculating matrix con- e
tinued fractions are discussed in RE8], Chap. 9.

Some results of the calculation of nonlinear response fron
Egs.(7)—(10) are shown in Figs. 1-3. In Fig. 1V)g versus
the bias parametetis shown for various amplitudes of the
ac force¢ and noise strengtly (the limit y—o corresponds
to the noiseless limjit As is apparent from these figures, for
low noise and high frequencies the shape of the characteri:
tics becomes distorted whehand y increase and the steps
induced(for the Josephson junction they are known as Sha- FIG. 3. The same as in Fig. 2 fof,, .
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1

iy D Tix(¥) T1mix W Zixy(7) noise (y>1) and frequenciesv satisfying the condition
Zy(w)=1-5
2

, v <ywl/Fy<1. The linear response solutions are recov-
13) ered from the nonlinear response in the weak ac force limit.
The theoretical results presented here may be useful for the

wherel ,(z) is the modified Bessel function of the first kind interpretation of experimental data for the microwave resis-

AN—ioT N —iorT

of order v [18] and \ is given by tance and reactance of superconducting weak links. For ex-
ample, nonlinear effects in the microwave resistance of a
Ly (M 14ixy(Y) high quality single crystal YB&£u;0,_; were observed ex-
A= ¥ : perimentally in[19], where it was shown that the resistively
Zfo L, (D145, (D) dt shunted junctioRSJ model, which is a particular case of

the present model, describes the essential features of the non-
linear microwave surface impedangg. Experimental data
on Z of high temperature superconducting thin films were
Iso successfully interpreted in the context of the RSJ model
20]. However, theoretical estimates [ih4,19,2Q were car-
Jigd out in the noiseless limit only. Our approach can also be
applied to the analysis of the nonlinear impedance taking
account of noise effects so as to provide a better quantitative
Goreement with experiments. We reiterate that a Langevin
equation of the kind used here also arises in a number of
other stochastic systems with a cosine potential subjected to
a strong ac driving force. Therefore the present results may
also be applied to the evaluation of the nonlinear response of
such systems. The application of the approach to particular
nonlinear response problems will be published elsewhere.

Figures 2 and 3 clearly demonstrate that B) yields per-
fect correspondence to the exact solution §et1 and that
the nonlinear response has a striking departure from line
response ag is increased. Fory>1, the nonlinear effects
become more pronounced and the results are in agreem
with those of Ref[14] for the Josephson junction nonlinear
impedance in the noiseless limit.

Here we have presented a usable method of analysis
the nonlinear response of a Brownian patrticle in a tilted pe-
riodic (cosing potential in the presence of noise for wide
ranges of the nonlineaf), the noise strengtliy), and the
bias(x) model parameters. The results are valid for low driv-
ing frequenciesv<w,, wherew,= JF,, since we have ig-
nored the inertial term in Ed1). In order to obtain them we
have used the matrix continued fraction approach, which al- The support of the work by INTA$Grant No. 96-0668
lowed us to solve the problem exactly. We have shown howand by the French Ministry of Foreign Affaif&rench Em-
pronounced nonlinear effects appear in the response for lowassy in Irelangis gratefully acknowledged.
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