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Nonlinear noninertial response of a Brownian particle in a tilted periodic potential to a strong ac
force
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The solution of the Langevin equation describing the dynamics of a Brownian particle in a tilted periodic
potential in the overdamped limit is obtained in terms of a matrix continued fraction, allowing us to evaluate
statistical averages governing the nonlinear response to a strong ac force. Pronounced nonlinear effects are
observed for large values of the ac force. For a weak ac force and low noise strength, the results obtained agree
closely with previously available linear response and noiseless solutions, respectively.
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The problem of the Brownian motion of a particle in
tilted periodic potential arises in a number of physical app
cations, for example, current-voltage characteristics of
Josephson junction@1#, mobility of superionic conductors
@2#, a laser with injected signal@3#, phase-locking technique
in radio engineering@4#, dielectric relaxation of molecula
crystals @5#, etc. ~This model currently merits attention i
view of the intense interest in the effect of noise in the o
eration of nonlinear systems, e.g., stochastic resonance@6#,
and of the ever increasing areas of application of the mo
e.g., to the ring-laser gyroscope@7#.! A comprehensive dis-
cussion of the model is given in@8,9#. A concise method of
numerical treatment of the model~in terms of infinite con-
tinued fractions! with a particular application to a ring-lase
gyroscope has been suggested by Cresseret al. @10#. Further
development of this approach has been given in R
@8–11#. However, all the solutions obtained in@8–11# are
valid only for a weak ac external signal and so pertain to
linear response. Nevertheless, a variety of problems exis
~e.g., the nonlinear impedance of a Josephson junction@1#,
the quantum noise effect on the mean beat frequency
dithered-ring-laser gyroscope@12#, etc.!, where thenonlinear
responseto a strong ac force is required. The calculation
the ac nonlinear response is a difficult task as there is
longer any connection between the step-on and the step
responses and the ac response because the response n
pends on the precise nature of the stimulus—as nounique
response function valid for all stimuli unlike the linear r
sponse exists. Attempts to calculate the nonlinear ac
sponse of a Brownian particle in a tilted periodic potent
have been made by many authors usually by means of
perturbation theory@5# so that the results are valid for low a
force amplitudes only, or in the noiseless limit, where t
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underlying nonlinear equation of motion can be solved n
merically ~see, e.g.,@13,14# and references cited therein!.

Here the ac nonlinear response of a Brownian particle
tilted cosine potential in the presence of noise is evalua
exactly applying the matrix continued fraction techniq
commonly used in nonlinear response problems@15#. Our
approach is a further development of those of Ref.@15# for
the calculation of the harmonic mixing signal in a cosi
potential and of Ref.@12# for the evaluation of the mean bea
frequency of a dithered-ring-laser gyroscope. However,
approach used here differs from those of Refs.@12# and@15#
~principally because thetime-dependentportion of the ac
nonlinear response may now be evaluated! and has the merit
of being considerably simpler that those previously availa
~for example, the expressions obtained in Ref.@12# for the
frequency-dependent dc portion of the response are so c
plicated that they are of limited use in practice!. The station-
ary ac nonlinear response was not extensively addressed
fore as it was not of experimental interest until recently, e
to the nonlinear ac~microwave! impedance of intrinsic and
fabricated Josephson junctions in the high temperature su
conductors@14#. Thus, it is timely to accomplish a detaile
study of the problem under consideration.

The Langevin equation of motion of a Brownian partic
in a tilted cosine potential written in a dimensionless form
given by @8#

d2

dt2
y~ t !1g

d

dt
y~ t !1F0 siny~ t !5Fdc1Fm cosvt1 f ~ t !.

~1!

where f (t) is a white noise driving force such that
4599 © 2000 The American Physical Society
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f ~ t ! f ~ t8!52gd~ t2t8!,

d(t) is the Diracd function, and the overbar means the s
tistical average over an ensemble of particles that have
started at timet with the same~sharp! initial position y(t)
5y and velocityẏ(t)5 ẏ. In the present case, we shall co
sider the overdamped limit only, which allows one to om
the inertial termÿ in Eq. ~1! @8#. This restricts the range o
frequencies (v!AF0) in which the model is applicable
Equation~1! now becomes@8#

t
d

dt
y~ t !2x2j cosvt1siny~ t !5F0

21f ~ t !, ~2!

wherex5Fdc/F0 and j5Fm /F0 are the tilt and nonlinea
parameters, andt5g/F0 is a relaxation time. Here we sha
use the Stratonovich definition of a stochastic differen
equation@16# as that definition is the mathematical idealiz
tion of the noninertial relaxation process under considera
@8,9#. On making the transformationy→r n5e2 iny in Eq.
~2!, one obtains a stochastic differential equation with a m
tiplicative noise term, the averaging of which yields t
differential-recurrence relations for the moments^r n&
5^e2 iny& ~as described in detail in Ref.@9#!, viz.,

t
d

dt
^r n&1@ in~x1j cosvt !1n2/g#^r n&5

n

2
@^r n21&

2^r n11&#. ~3!

Here the angular brackets mean averaging over the s
values ofy at time t @9#. By assuming that the magnitude o
the ac force parameterj in Eq. ~3! may take an arbitrary
value, one is faced with an intrinsically nonlinear proble
which can be solved as follows.
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Since we are solely concerned with the stationary ac
sponse, which is independent of the initial condition, o
needs to calculate the solution of Eq.~3! corresponding to
the stationary state. To accomplish this, one may seek al
^r n& in the form

^r n&~ t !5 (
k52`

`

Fk
n~v!eikvt. ~4!

On substituting Eq.~4! into Eq. ~3!, we obtain recurrence
equations for the Fourier amplitudesFk

n(v), viz.,

Fk
n11~v!1 izn,k~v!Fk

n~v!1 i j@Fk21
n ~v!1Fk11

n ~v!#

2Fk
n21~v!50, ~5!

where zn,k(v)52(x1vtk/n2 in/g). The solution of the
two variable ~k, n! recurrence Eq.~5! can be obtained in
terms of matrix continued fractions as follows. Let us intr
duce infinite column vectorsCn(v) given by

Cn~v!S ]

F22
n ~v!

F21
n ~v!

F0
n~v!

F1
n~v!

F2
n~v!

]

D with C0~v!5C05S ]

0
0
1
0
0
]

D .

Next, for n>0 the scalarfive-termrecurrence Eq.~5! can be
transformed into thematrix three-termrecurrence equation

Qn~v!Cn~v!1Cn11~v!5Cn21~v!, n51,2,3,..., ~6!

whereQn(v) is a tridiagonal infinite matrix given by
Qn~v!5 iS � ] ] ] ] ] �

¯ zn,22~v! j 0 0 0 ¯

¯ j zn,21~v! j 0 0 ¯

¯ 0 j zn,0~v! j 0 ¯

¯ 0 0 j zn,1~v! j ¯

¯ 0 0 0 j zn,2~v! ¯

� ] ] ] ] ] �

D .
ju-
The recurrence Eq.~6! can be solved forC1 in terms of
matrix continued fractions, viz.,

C1~v!5
I

Q1~v!1
I

Q2~v!1
I

Q3~v!1¯

C0 , ~7!

where the fraction lines designate the matrix inversions anI
is the identity matrix of infinite dimension. The column ve
tor Cn(v) for n521 can also be obtained from Eq.~7! by

taking into account thatF0
21(v)5F0

1* (v) and Fk
21(v)5

2F2k
1* (v) for kÞ0 ~the asterisk denotes the complex con

gate!.
Having determined the column vectorsC1(v) and

C21(v), one may evaluate from Eqs.~2! and~7! the nonlin-
ear responsêV&5t^ ȳ̇& given by

^V&5x1j cosvt2^siny&~ t !, ~8!
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where^siny&(t)5i@^r̄&2^r21&#/2. The definition of Eq.~8! is
very useful for particular applications as it determines, e
the current-voltage characteristics and nonlinear impeda
of a Josephson junction@1#, the mean beat frequency of
dithered-ring-laser gyroscope@7#, etc. Thus, one can calcu
late both thetime-independent~but frequency-dependent! dc
response

^V&0
v5x1ImbF0

1~v!c ~9!

and thetime-dependent stationaryac response

ŠV2^V&0
v
‹5 (

k51

`

jk Re@Zk~v!eikvt#, ~10!

where

Zk~v!5d1,k2 i j2k@Fk
1~v!1F2k

1* ~v!#,

d i ,k is Kronecker’s delta. The limit of a weak ac forc
(j!1) allows us to calculate from Eqs.~9! and ~10! the
linear response to an ac forceFmeivt as well. On noting that
^V&5x2^siny&01^V&1, where the subscripts ‘‘0’’ and ‘‘1’’
denote the average in the absence of the ac force and
average which is linear inFmeivt, respectively, we have

^V&15Z1~v!jeivt. ~11!

The matrix continued fraction solution just obtained is
general result for the nonlinear response to an ac exte
force of arbitrary amplitude. It may be shown by means
the direct numerical calculation that the matrix continu
fraction in Eq.~7! converges in all ranges of the model p
rameters of interest~algorithms for calculating matrix con
tinued fractions are discussed in Ref.@8#, Chap. 9!.

Some results of the calculation of nonlinear response fr
Eqs.~7!–~10! are shown in Figs. 1–3. In Fig. 1,^V&0

v versus
the bias parameterx is shown for various amplitudes of th
ac forcej and noise strengthg ~the limit g→` corresponds
to the noiseless limit!. As is apparent from these figures, fo
low noise and high frequencies the shape of the characte
tics becomes distorted whenj and g increase and the step
induced~for the Josephson junction they are known as S

FIG. 1. ^V&0
v vs biasx parameter for variousj ~g525 andvt

50.4!, showing the force-induced~Shapiro! steps; stars, Eq.~12!.
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piro steps! on the curves adhere to the line^V&0
v5x. For j

50, our theory yields the frequency-independent dc respo
^V&0 , which is in agreement with that of Ambegaokar an
Halperin @17#, who computed the dc current-voltage chara
teristic of a Josephson junction by calculating the tim
independent solution of the noninertial Fokker-Planck equ
tion associated with the Langevin equation~2!. Their results
may be written as@9#

^V&05x1Im@ I 11 ixg~g!/I ixg~g!#. ~12!

The in-phaseRv5Re@Z1(v)# and the out-of-phaseXv5
2Im@Z1(v)# parts of the first harmonic dynamic respons
versusx for variousj are presented in Figs. 2 and 3, showin
strong phase-locking effects in the ac response, similar to
steps seen in̂V&0

v . For large values of the dc bias the influ
ence of the ac force diminishes andRv and Xv approach
unity and zero, respectively. Figures 2 and 3 show clea
that the response saturates at largej. For j!1, the present
theory is in accordance with the results of the calculation
the linear response described in Refs.@9# and @11# for the
particular application to the Josephson junction, where bo
exact and approximate equations for the linear impedan
Z1(v) of the junction have been derived. In our notation th
approximate equation forZ1(v) reads

FIG. 2. Rv vs x for variousj ~g550 andvt50.1!, showing
pronounced departure from linear response~curve 1! as j is in-
creased; stars, Eq.~13!.

FIG. 3. The same as in Fig. 2 forXv .
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Z1~v!512
1

2 F I 11 ixg~g!/I ixg~g!

l2 ivt
1

I 12 ixg~g!/I 2 ixg~g!

l* 2 ivt G ,
~13!

whereI n(z) is the modified Bessel function of the first kin
of ordern @18# andl is given by

l5
I ixg~g!I 11 ixg~g!

2E
0

g

I ixg~ t !I 11 ixg~ t !dt

.

Figures 2 and 3 clearly demonstrate that Eq.~13! yields per-
fect correspondence to the exact solution forj!1 and that
the nonlinear response has a striking departure from lin
response asj is increased. Forg@1, the nonlinear effects
become more pronounced and the results are in agree
with those of Ref.@14# for the Josephson junction nonline
impedance in the noiseless limit.

Here we have presented a usable method of analys
the nonlinear response of a Brownian particle in a tilted
riodic ~cosine! potential in the presence of noise for wid
ranges of the nonlinear~j!, the noise strength~g!, and the
bias~x! model parameters. The results are valid for low dr
ing frequenciesv!vp , wherevp5AF0, since we have ig-
nored the inertial term in Eq.~1!. In order to obtain them we
have used the matrix continued fraction approach, which
lowed us to solve the problem exactly. We have shown h
pronounced nonlinear effects appear in the response for
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noise (g@1) and frequenciesv satisfying the condition
g21<gv/F0<1. The linear response solutions are reco
ered from the nonlinear response in the weak ac force lim
The theoretical results presented here may be useful for
interpretation of experimental data for the microwave res
tance and reactance of superconducting weak links. For
ample, nonlinear effects in the microwave resistance o
high quality single crystal YBa2Cu3O72d were observed ex-
perimentally in@19#, where it was shown that the resistive
shunted junction~RSJ! model, which is a particular case o
the present model, describes the essential features of the
linear microwave surface impedanceZs . Experimental data
on Zs of high temperature superconducting thin films we
also successfully interpreted in the context of the RSJ mo
@20#. However, theoretical estimates in@14,19,20# were car-
ried out in the noiseless limit only. Our approach can also
applied to the analysis of the nonlinear impedance tak
account of noise effects so as to provide a better quantita
agreement with experiments. We reiterate that a Lange
equation of the kind used here also arises in a numbe
other stochastic systems with a cosine potential subjecte
a strong ac driving force. Therefore the present results m
also be applied to the evaluation of the nonlinear respons
such systems. The application of the approach to partic
nonlinear response problems will be published elsewhere
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